This CPE summary could be partial or incomplete. Please contact us for a detailed listing.

Summary

Detail
Vendor Linux First view 1998-06-22
Product Linux Kernel Last view 2024-07-17
Version 2.1.14 Type Os
Update *  
Edition *  
Language *  
Sofware Edition *  
Target Software *  
Target Hardware *  
Other *  
 
CPE Product cpe:2.3:o:linux:linux_kernel

Activity : Overall

Related : CVE

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
  Date Alert Description
5.5 2024-07-17 CVE-2024-41010

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix too early release of tcx_entry

Pedro Pinto and later independently also Hyunwoo Kim and Wongi Lee reported an issue that the tcx_entry can be released too early leading to a use after free (UAF) when an active old-style ingress or clsact qdisc with a shared tc block is later replaced by another ingress or clsact instance.

Essentially, the sequence to trigger the UAF (one example) can be as follows:

1. A network namespace is created
2. An ingress qdisc is created. This allocates a tcx_entry, and
&tcx_entry->miniq is stored in the qdisc's miniqp->p_miniq. At the
same time, a tcf block with index 1 is created.
3. chain0 is attached to the tcf block. chain0 must be connected to
the block linked to the ingress qdisc to later reach the function
tcf_chain0_head_change_cb_del() which triggers the UAF.
4. Create and graft a clsact qdisc. This causes the ingress qdisc
created in step 1 to be removed, thus freeing the previously linked
tcx_entry:

rtnetlink_rcv_msg()
=> tc_modify_qdisc()
=> qdisc_create()
=> clsact_init() [a]
=> qdisc_graft()
=> qdisc_destroy()
=> __qdisc_destroy()
=> ingress_destroy() [b]
=> tcx_entry_free()
=> kfree_rcu() // tcx_entry freed

5. Finally, the network namespace is closed. This registers the
cleanup_net worker, and during the process of releasing the
remaining clsact qdisc, it accesses the tcx_entry that was
already freed in step 4, causing the UAF to occur:

cleanup_net()
=> ops_exit_list()
=> default_device_exit_batch()
=> unregister_netdevice_many()
=> unregister_netdevice_many_notify()
=> dev_shutdown()
=> qdisc_put()
=> clsact_destroy() [c]
=> tcf_block_put_ext()
=> tcf_chain0_head_change_cb_del()
=> tcf_chain_head_change_item()
=> clsact_chain_head_change()
=> mini_qdisc_pair_swap() // UAF

There are also other variants, the gist is to add an ingress (or clsact) qdisc with a specific shared block, then to replace that qdisc, waiting for the tcx_entry kfree_rcu() to be executed and subsequently accessing the current active qdisc's miniq one way or another.

The correct fix is to turn the miniq_active boolean into a counter. What can be observed, at step 2 above, the counter transitions from 0->1, at step [a] from 1->2 (in order for the miniq object to remain active during the replacement), then in [b] from 2->1 and finally [c] 1->0 with the eventual release. The reference counter in general ranges from [0,2] and it does not need to be atomic since all access to the counter is protected by the rtnl mutex. With this in place, there is no longer a UAF happening and the tcx_entry is freed at the correct time.

5.5 2024-07-17 CVE-2024-41009

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix overrunning reservations in ringbuf

The BPF ring buffer internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters: consumer_pos is the consumer counter to show which logical position the consumer consumed the data, and producer_pos which is the producer counter denoting the amount of data reserved by all producers.

Each time a record is reserved, the producer that "owns" the record will successfully advance producer counter. In user space each time a record is read, the consumer of the data advanced the consumer counter once it finished processing. Both counters are stored in separate pages so that from user space, the producer counter is read-only and the consumer counter is read-write.

One aspect that simplifies and thus speeds up the implementation of both producers and consumers is how the data area is mapped twice contiguously back-to-back in the virtual memory, allowing to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory.

Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for book-keeping the length and offset, and is inaccessible to the BPF program. Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ` for the BPF program to use. Bing-Jhong and Muhammad reported that it is however possible to make a second allocated memory chunk overlapping with the first chunk and as a result, the BPF program is now able to edit first chunk's header.

For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in [0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets allocate a chunk B with size 0x3000. This will succeed because consumer_pos was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask` check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data pages. This means that chunk B at [0x4000,0x4008] is chunk A's header. bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong page and could cause a crash.

Fix it by calculating the oldest pending_pos and check whether the range from the oldest outstanding record to the newest would span beyond the ring buffer size. If that is the case, then reject the request. We've tested with the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh) before/after the fix and while it seems a bit slower on some benchmarks, it is still not significantly enough to matter.

7.1 2024-07-16 CVE-2022-48866

In the Linux kernel, the following vulnerability has been resolved:

HID: hid-thrustmaster: fix OOB read in thrustmaster_interrupts

Syzbot reported an slab-out-of-bounds Read in thrustmaster_probe() bug. The root case is in missing validation check of actual number of endpoints.

Code should not blindly access usb_host_interface::endpoint array, since it may contain less endpoints than code expects.

Fix it by adding missing validaion check and print an error if number of endpoints do not match expected number

5.5 2024-07-16 CVE-2022-48865

In the Linux kernel, the following vulnerability has been resolved:

tipc: fix kernel panic when enabling bearer

When enabling a bearer on a node, a kernel panic is observed:

[ 4.498085] RIP: 0010:tipc_mon_prep+0x4e/0x130 [tipc] ... [ 4.520030] Call Trace: [ 4.520689] [ 4.521236] tipc_link_build_proto_msg+0x375/0x750 [tipc] [ 4.522654] tipc_link_build_state_msg+0x48/0xc0 [tipc] [ 4.524034] __tipc_node_link_up+0xd7/0x290 [tipc] [ 4.525292] tipc_rcv+0x5da/0x730 [tipc] [ 4.526346] ? __netif_receive_skb_core+0xb7/0xfc0 [ 4.527601] tipc_l2_rcv_msg+0x5e/0x90 [tipc] [ 4.528737] __netif_receive_skb_list_core+0x20b/0x260 [ 4.530068] netif_receive_skb_list_internal+0x1bf/0x2e0 [ 4.531450] ? dev_gro_receive+0x4c2/0x680 [ 4.532512] napi_complete_done+0x6f/0x180 [ 4.533570] virtnet_poll+0x29c/0x42e [virtio_net] ...

The node in question is receiving activate messages in another thread after changing bearer status to allow message sending/ receiving in current thread:

thread 1 | thread 2
-------- | --------
| tipc_enable_bearer() |
test_and_set_bit_lock() |
tipc_bearer_xmit_skb() |
| tipc_l2_rcv_msg()
| tipc_rcv()
| __tipc_node_link_up()
| tipc_link_build_state_msg()
| tipc_link_build_proto_msg()
| tipc_mon_prep()
| {
| ...
| // null-pointer dereference
| u16 gen = mon->dom_gen;
| ...
| }
// Not being executed yet |
tipc_mon_create() |
{ |
... |
// allocate |
mon = kzalloc(); |
... |
} |

Monitoring pointer in thread 2 is dereferenced before monitoring data is allocated in thread 1. This causes kernel panic.

This commit fixes it by allocating the monitoring data before enabling the bearer to receive messages.

5.5 2024-07-16 CVE-2022-48864

In the Linux kernel, the following vulnerability has been resolved:

vdpa/mlx5: add validation for VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command

When control vq receives a VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command request from the driver, presently there is no validation against the number of queue pairs to configure, or even if multiqueue had been negotiated or not is unverified. This may lead to kernel panic due to uninitialized resource for the queues were there any bogus request sent down by untrusted driver. Tie up the loose ends there.

5.5 2024-07-16 CVE-2022-48863

In the Linux kernel, the following vulnerability has been resolved:

mISDN: Fix memory leak in dsp_pipeline_build()

dsp_pipeline_build() allocates dup pointer by kstrdup(cfg), but then it updates dup variable by strsep(&dup, "|"). As a result when it calls kfree(dup), the dup variable contains NULL.

Found by Linux Driver Verification project (linuxtesting.org) with SVACE.

5.5 2024-07-16 CVE-2022-48862

In the Linux kernel, the following vulnerability has been resolved:

vhost: fix hung thread due to erroneous iotlb entries

In vhost_iotlb_add_range_ctx(), range size can overflow to 0 when start is 0 and last is ULONG_MAX. One instance where it can happen is when userspace sends an IOTLB message with iova=size=uaddr=0 (vhost_process_iotlb_msg). So, an entry with size = 0, start = 0, last = ULONG_MAX ends up in the iotlb. Next time a packet is sent, iotlb_access_ok() loops indefinitely due to that erroneous entry.

Call Trace:

iotlb_access_ok+0x21b/0x3e0 drivers/vhost/vhost.c:1340
vq_meta_prefetch+0xbc/0x280 drivers/vhost/vhost.c:1366
vhost_transport_do_send_pkt+0xe0/0xfd0 drivers/vhost/vsock.c:104
vhost_worker+0x23d/0x3d0 drivers/vhost/vhost.c:372
kthread+0x2e9/0x3a0 kernel/kthread.c:377
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295

Reported by syzbot at:
https://syzkaller.appspot.com/bug?extid=0abd373e2e50d704db87

To fix this, do two things:

1. Return -EINVAL in vhost_chr_write_iter() when userspace asks to map
a range with size 0. 2. Fix vhost_iotlb_add_range_ctx() to handle the range [0, ULONG_MAX]
by splitting it into two entries.

5.5 2024-07-16 CVE-2022-48861

In the Linux kernel, the following vulnerability has been resolved:

vdpa: fix use-after-free on vp_vdpa_remove

When vp_vdpa driver is unbind, vp_vdpa is freed in vdpa_unregister_device and then vp_vdpa->mdev.pci_dev is dereferenced in vp_modern_remove, triggering use-after-free.

Call Trace of unbinding driver free vp_vdpa : do_syscall_64
vfs_write
kernfs_fop_write_iter
device_release_driver_internal
pci_device_remove
vp_vdpa_remove
vdpa_unregister_device
kobject_release
device_release
kfree

Call Trace of dereference vp_vdpa->mdev.pci_dev: vp_modern_remove
pci_release_selected_regions
pci_release_region
pci_resource_len
pci_resource_end
(dev)->resource[(bar)].end

5.5 2024-07-16 CVE-2022-48860

In the Linux kernel, the following vulnerability has been resolved:

ethernet: Fix error handling in xemaclite_of_probe

This node pointer is returned by of_parse_phandle() with refcount incremented in this function. Calling of_node_put() to avoid the refcount leak. As the remove function do.

5.5 2024-07-16 CVE-2022-48859

In the Linux kernel, the following vulnerability has been resolved:

net: marvell: prestera: Add missing of_node_put() in prestera_switch_set_base_mac_addr

This node pointer is returned by of_find_compatible_node() with refcount incremented. Calling of_node_put() to aovid the refcount leak.

7 2024-07-16 CVE-2022-48858

In the Linux kernel, the following vulnerability has been resolved:

net/mlx5: Fix a race on command flush flow

Fix a refcount use after free warning due to a race on command entry. Such race occurs when one of the commands releases its last refcount and frees its index and entry while another process running command flush flow takes refcount to this command entry. The process which handles commands flush may see this command as needed to be flushed if the other process released its refcount but didn't release the index yet. Fix it by adding the needed spin lock.

It fixes the following warning trace:

refcount_t: addition on 0; use-after-free. WARNING: CPU: 11 PID: 540311 at lib/refcount.c:25 refcount_warn_saturate+0x80/0xe0 ... RIP: 0010:refcount_warn_saturate+0x80/0xe0 ... Call Trace:

mlx5_cmd_trigger_completions+0x293/0x340 [mlx5_core]
mlx5_cmd_flush+0x3a/0xf0 [mlx5_core]
enter_error_state+0x44/0x80 [mlx5_core]
mlx5_fw_fatal_reporter_err_work+0x37/0xe0 [mlx5_core]
process_one_work+0x1be/0x390
worker_thread+0x4d/0x3d0
? rescuer_thread+0x350/0x350
kthread+0x141/0x160
? set_kthread_struct+0x40/0x40
ret_from_fork+0x1f/0x30

5.5 2024-07-16 CVE-2022-48857

In the Linux kernel, the following vulnerability has been resolved:

NFC: port100: fix use-after-free in port100_send_complete

Syzbot reported UAF in port100_send_complete(). The root case is in missing usb_kill_urb() calls on error handling path of ->probe function.

port100_send_complete() accesses devm allocated memory which will be freed on probe failure. We should kill this urbs before returning an error from probe function to prevent reported use-after-free

Fail log:

BUG: KASAN: use-after-free in port100_send_complete+0x16e/0x1a0 drivers/nfc/port100.c:935 Read of size 1 at addr ffff88801bb59540 by task ksoftirqd/2/26 ... Call Trace:

__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0x8d/0x303 mm/kasan/report.c:255
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
port100_send_complete+0x16e/0x1a0 drivers/nfc/port100.c:935
__usb_hcd_giveback_urb+0x2b0/0x5c0 drivers/usb/core/hcd.c:1670

...

Allocated by task 1255:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:436 [inline]
____kasan_kmalloc mm/kasan/common.c:515 [inline]
____kasan_kmalloc mm/kasan/common.c:474 [inline]
__kasan_kmalloc+0xa6/0xd0 mm/kasan/common.c:524
alloc_dr drivers/base/devres.c:116 [inline]
devm_kmalloc+0x96/0x1d0 drivers/base/devres.c:823
devm_kzalloc include/linux/device.h:209 [inline]
port100_probe+0x8a/0x1320 drivers/nfc/port100.c:1502

Freed by task 1255:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track+0x21/0x30 mm/kasan/common.c:45
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free+0xff/0x140 mm/kasan/common.c:328
kasan_slab_free include/linux/kasan.h:236 [inline]
__cache_free mm/slab.c:3437 [inline]
kfree+0xf8/0x2b0 mm/slab.c:3794
release_nodes+0x112/0x1a0 drivers/base/devres.c:501
devres_release_all+0x114/0x190 drivers/base/devres.c:530
really_probe+0x626/0xcc0 drivers/base/dd.c:670

5.5 2024-07-16 CVE-2022-48856

In the Linux kernel, the following vulnerability has been resolved:

gianfar: ethtool: Fix refcount leak in gfar_get_ts_info

The of_find_compatible_node() function returns a node pointer with refcount incremented, We should use of_node_put() on it when done Add the missing of_node_put() to release the refcount.

7.1 2024-07-16 CVE-2022-48855

In the Linux kernel, the following vulnerability has been resolved:

sctp: fix kernel-infoleak for SCTP sockets

syzbot reported a kernel infoleak [1] of 4 bytes.

After analysis, it turned out r->idiag_expires is not initialized if inet_sctp_diag_fill() calls inet_diag_msg_common_fill()

Make sure to clear idiag_timer/idiag_retrans/idiag_expires and let inet_diag_msg_sctpasoc_fill() fill them again if needed.

[1]

BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:121 [inline] BUG: KMSAN: kernel-infoleak in copyout lib/iov_iter.c:154 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x6ef/0x25a0 lib/iov_iter.c:668
instrument_copy_to_user include/linux/instrumented.h:121 [inline]
copyout lib/iov_iter.c:154 [inline]
_copy_to_iter+0x6ef/0x25a0 lib/iov_iter.c:668
copy_to_iter include/linux/uio.h:162 [inline]
simple_copy_to_iter+0xf3/0x140 net/core/datagram.c:519
__skb_datagram_iter+0x2d5/0x11b0 net/core/datagram.c:425
skb_copy_datagram_iter+0xdc/0x270 net/core/datagram.c:533
skb_copy_datagram_msg include/linux/skbuff.h:3696 [inline]
netlink_recvmsg+0x669/0x1c80 net/netlink/af_netlink.c:1977
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
__sys_recvfrom+0x795/0xa10 net/socket.c:2097
__do_sys_recvfrom net/socket.c:2115 [inline]
__se_sys_recvfrom net/socket.c:2111 [inline]
__x64_sys_recvfrom+0x19d/0x210 net/socket.c:2111
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae

Uninit was created at:
slab_post_alloc_hook mm/slab.h:737 [inline]
slab_alloc_node mm/slub.c:3247 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4975
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1158 [inline]
netlink_dump+0x3e5/0x16c0 net/netlink/af_netlink.c:2248
__netlink_dump_start+0xcf8/0xe90 net/netlink/af_netlink.c:2373
netlink_dump_start include/linux/netlink.h:254 [inline]
inet_diag_handler_cmd+0x2e7/0x400 net/ipv4/inet_diag.c:1341
sock_diag_rcv_msg+0x24a/0x620
netlink_rcv_skb+0x40c/0x7e0 net/netlink/af_netlink.c:2494
sock_diag_rcv+0x63/0x80 net/core/sock_diag.c:277
netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline]
netlink_unicast+0x1093/0x1360 net/netlink/af_netlink.c:1343
netlink_sendmsg+0x14d9/0x1720 net/netlink/af_netlink.c:1919
sock_sendmsg_nosec net/socket.c:705 [inline]
sock_sendmsg net/socket.c:725 [inline]
sock_write_iter+0x594/0x690 net/socket.c:1061
do_iter_readv_writev+0xa7f/0xc70
do_iter_write+0x52c/0x1500 fs/read_write.c:851
vfs_writev fs/read_write.c:924 [inline]
do_writev+0x645/0xe00 fs/read_write.c:967
__do_sys_writev fs/read_write.c:1040 [inline]
__se_sys_writev fs/read_write.c:1037 [inline]
__x64_sys_writev+0xe5/0x120 fs/read_write.c:1037
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae

Bytes 68-71 of 2508 are uninitialized Memory access of size 2508 starts at ffff888114f9b000 Data copied to user address 00007f7fe09ff2e0

CPU: 1 PID: 3478 Comm: syz-executor306 Not tainted 5.17.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011

7.8 2024-07-16 CVE-2022-48854

In the Linux kernel, the following vulnerability has been resolved:

net: arc_emac: Fix use after free in arc_mdio_probe()

If bus->state is equal to MDIOBUS_ALLOCATED, mdiobus_free(bus) will free the "bus". But bus->name is still used in the next line, which will lead to a use after free.

We can fix it by putting the name in a local variable and make the bus->name point to the rodata section "name",then use the name in the error message without referring to bus to avoid the uaf.

5.5 2024-07-16 CVE-2022-48853

In the Linux kernel, the following vulnerability has been resolved:

swiotlb: fix info leak with DMA_FROM_DEVICE

The problem I'm addressing was discovered by the LTP test covering cve-2018-1000204.

A short description of what happens follows: 1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO
interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV
and a corresponding dxferp. The peculiar thing about this is that TUR
is not reading from the device. 2) In sg_start_req() the invocation of blk_rq_map_user() effectively
bounces the user-space buffer. As if the device was to transfer into
it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in
sg_build_indirect()") we make sure this first bounce buffer is
allocated with GFP_ZERO. 3) For the rest of the story we keep ignoring that we have a TUR, so the
device won't touch the buffer we prepare as if the we had a
DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device
and the buffer allocated by SG is mapped by the function
virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here
scatter-gather and not scsi generics). This mapping involves bouncing
via the swiotlb (we need swiotlb to do virtio in protected guest like
s390 Secure Execution, or AMD SEV). 4) When the SCSI TUR is done, we first copy back the content of the second
(that is swiotlb) bounce buffer (which most likely contains some
previous IO data), to the first bounce buffer, which contains all
zeros. Then we copy back the content of the first bounce buffer to
the user-space buffer. 5) The test case detects that the buffer, which it zero-initialized,
ain't all zeros and fails.

One can argue that this is an swiotlb problem, because without swiotlb we leak all zeros, and the swiotlb should be transparent in a sense that it does not affect the outcome (if all other participants are well behaved).

Copying the content of the original buffer into the swiotlb buffer is the only way I can think of to make swiotlb transparent in such scenarios. So let's do just that if in doubt, but allow the driver to tell us that the whole mapped buffer is going to be overwritten, in which case we can preserve the old behavior and avoid the performance impact of the extra bounce.

3.3 2024-07-16 CVE-2022-48852

In the Linux kernel, the following vulnerability has been resolved:

drm/vc4: hdmi: Unregister codec device on unbind

On bind we will register the HDMI codec device but we don't unregister it on unbind, leading to a device leakage. Unregister our device at unbind.

7.8 2024-07-16 CVE-2022-48851

In the Linux kernel, the following vulnerability has been resolved:

staging: gdm724x: fix use after free in gdm_lte_rx()

The netif_rx_ni() function frees the skb so we can't dereference it to save the skb->len.

5.5 2024-07-16 CVE-2022-48850

In the Linux kernel, the following vulnerability has been resolved:

net-sysfs: add check for netdevice being present to speed_show

When bringing down the netdevice or system shutdown, a panic can be triggered while accessing the sysfs path because the device is already removed.

[ 755.549084] mlx5_core 0000:12:00.1: Shutdown was called
[ 756.404455] mlx5_core 0000:12:00.0: Shutdown was called
...
[ 757.937260] BUG: unable to handle kernel NULL pointer dereference at (null)
[ 758.031397] IP: [] dma_pool_alloc+0x1ab/0x280

crash> bt
...
PID: 12649 TASK: ffff8924108f2100 CPU: 1 COMMAND: "amsd"
...
#9 [ffff89240e1a38b0] page_fault at ffffffff8f38c778
[exception RIP: dma_pool_alloc+0x1ab]
RIP: ffffffff8ee11acb RSP: ffff89240e1a3968 RFLAGS: 00010046
RAX: 0000000000000246 RBX: ffff89243d874100 RCX: 0000000000001000
RDX: 0000000000000000 RSI: 0000000000000246 RDI: ffff89243d874090
RBP: ffff89240e1a39c0 R8: 000000000001f080 R9: ffff8905ffc03c00
R10: ffffffffc04680d4 R11: ffffffff8edde9fd R12: 00000000000080d0
R13: ffff89243d874090 R14: ffff89243d874080 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#10 [ffff89240e1a39c8] mlx5_alloc_cmd_msg at ffffffffc04680f3 [mlx5_core]
#11 [ffff89240e1a3a18] cmd_exec at ffffffffc046ad62 [mlx5_core]
#12 [ffff89240e1a3ab8] mlx5_cmd_exec at ffffffffc046b4fb [mlx5_core]
#13 [ffff89240e1a3ae8] mlx5_core_access_reg at ffffffffc0475434 [mlx5_core]
#14 [ffff89240e1a3b40] mlx5e_get_fec_caps at ffffffffc04a7348 [mlx5_core]
#15 [ffff89240e1a3bb0] get_fec_supported_advertised at ffffffffc04992bf [mlx5_core]
#16 [ffff89240e1a3c08] mlx5e_get_link_ksettings at ffffffffc049ab36 [mlx5_core]
#17 [ffff89240e1a3ce8] __ethtool_get_link_ksettings at ffffffff8f25db46
#18 [ffff89240e1a3d48] speed_show at ffffffff8f277208
#19 [ffff89240e1a3dd8] dev_attr_show at ffffffff8f0b70e3
#20 [ffff89240e1a3df8] sysfs_kf_seq_show at ffffffff8eedbedf
#21 [ffff89240e1a3e18] kernfs_seq_show at ffffffff8eeda596
#22 [ffff89240e1a3e28] seq_read at ffffffff8ee76d10
#23 [ffff89240e1a3e98] kernfs_fop_read at ffffffff8eedaef5
#24 [ffff89240e1a3ed8] vfs_read at ffffffff8ee4e3ff
#25 [ffff89240e1a3f08] sys_read at ffffffff8ee4f27f
#26 [ffff89240e1a3f50] system_call_fastpath at ffffffff8f395f92

crash> net_device.state ffff89443b0c0000
state = 0x5 (__LINK_STATE_START| __LINK_STATE_NOCARRIER)

To prevent this scenario, we also make sure that the netdevice is present.

5.5 2024-07-16 CVE-2022-48849

In the Linux kernel, the following vulnerability has been resolved:

drm/amdgpu: bypass tiling flag check in virtual display case (v2)

vkms leverages common amdgpu framebuffer creation, and also as it does not support FB modifier, there is no need to check tiling flags when initing framebuffer when virtual display is enabled.

This can fix below calltrace:

amdgpu 0000:00:08.0: GFX9+ requires FB check based on format modifier WARNING: CPU: 0 PID: 1023 at drivers/gpu/drm/amd/amdgpu/amdgpu_display.c:1150 amdgpu_display_framebuffer_init+0x8e7/0xb40 [amdgpu]

v2: check adev->enable_virtual_display instead as vkms can be
enabled in bare metal as well.

7.8 2024-07-16 CVE-2022-48848

In the Linux kernel, the following vulnerability has been resolved:

tracing/osnoise: Do not unregister events twice

Nicolas reported that using:

# trace-cmd record -e all -M 10 -p osnoise --poll

Resulted in the following kernel warning:

------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at kernel/tracepoint.c:404 tracepoint_probe_unregister+0x280/0x370
[...]
CPU: 0 PID: 1217 Comm: trace-cmd Not tainted 5.17.0-rc6-next-20220307-nico+ #19
RIP: 0010:tracepoint_probe_unregister+0x280/0x370
[...]
CR2: 00007ff919b29497 CR3: 0000000109da4005 CR4: 0000000000170ef0
Call Trace:

osnoise_workload_stop+0x36/0x90
tracing_set_tracer+0x108/0x260
tracing_set_trace_write+0x94/0xd0
? __check_object_size.part.0+0x10a/0x150
? selinux_file_permission+0x104/0x150
vfs_write+0xb5/0x290
ksys_write+0x5f/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7ff919a18127
[...]
---[ end trace 0000000000000000 ]---

The warning complains about an attempt to unregister an unregistered tracepoint.

This happens on trace-cmd because it first stops tracing, and then switches the tracer to nop. Which is equivalent to:

# cd /sys/kernel/tracing/
# echo osnoise > current_tracer
# echo 0 > tracing_on
# echo nop > current_tracer

The osnoise tracer stops the workload when no trace instance is actually collecting data. This can be caused both by disabling tracing or disabling the tracer itself.

To avoid unregistering events twice, use the existing trace_osnoise_callback_enabled variable to check if the events (and the workload) are actually active before trying to deactivate them.

7.8 2024-07-16 CVE-2022-48847

In the Linux kernel, the following vulnerability has been resolved:

watch_queue: Fix filter limit check

In watch_queue_set_filter(), there are a couple of places where we check that the filter type value does not exceed what the type_filter bitmap can hold. One place calculates the number of bits by:

if (tf[i].type >= sizeof(wfilter->type_filter) * 8)

which is fine, but the second does:

if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)

which is not. This can lead to a couple of out-of-bounds writes due to a too-large type:

(1) __set_bit() on wfilter->type_filter
(2) Writing more elements in wfilter->filters[] than we allocated.

Fix this by just using the proper WATCH_TYPE__NR instead, which is the number of types we actually know about.

The bug may cause an oops looking something like:

BUG: KASAN: slab-out-of-bounds in watch_queue_set_filter+0x659/0x740
Write of size 4 at addr ffff88800d2c66bc by task watch_queue_oob/611
...
Call Trace:

dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
...
kasan_report.cold+0x7f/0x11b
...
watch_queue_set_filter+0x659/0x740
...
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae

Allocated by task 611:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
watch_queue_set_filter+0x23a/0x740
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae

The buggy address belongs to the object at ffff88800d2c66a0
which belongs to the cache kmalloc-32 of size 32
The buggy address is located 28 bytes inside of
32-byte region [ffff88800d2c66a0, ffff88800d2c66c0)

5.5 2024-07-16 CVE-2022-48846

In the Linux kernel, the following vulnerability has been resolved:

block: release rq qos structures for queue without disk

blkcg_init_queue() may add rq qos structures to request queue, previously blk_cleanup_queue() calls rq_qos_exit() to release them, but commit 8e141f9eb803 ("block: drain file system I/O on del_gendisk") moves rq_qos_exit() into del_gendisk(), so memory leak is caused because queues may not have disk, such as un-present scsi luns, nvme admin queue, ...

Fixes the issue by adding rq_qos_exit() to blk_cleanup_queue() back.

BTW, v5.18 won't need this patch any more since we move blkcg_init_queue()/blkcg_exit_queue() into disk allocation/release handler, and patches have been in for-5.18/block.

5.5 2024-07-16 CVE-2022-48845

In the Linux kernel, the following vulnerability has been resolved:

MIPS: smp: fill in sibling and core maps earlier

After enabling CONFIG_SCHED_CORE (landed during 5.14 cycle), 2-core 2-thread-per-core interAptiv (CPS-driven) started emitting the following:

[ 0.025698] CPU1 revision is: 0001a120 (MIPS interAptiv (multi)) [ 0.048183] ------------[ cut here ]------------ [ 0.048187] WARNING: CPU: 1 PID: 0 at kernel/sched/core.c:6025 sched_core_cpu_starting+0x198/0x240 [ 0.048220] Modules linked in: [ 0.048233] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.17.0-rc3+ #35 b7b319f24073fd9a3c2aa7ad15fb7993eec0b26f [ 0.048247] Stack : 817f0000 00000004 327804c8 810eb050 00000000 00000004 00000000 c314fdd1 [ 0.048278] 830cbd64 819c0000 81800000 817f0000 83070bf4 00000001 830cbd08 00000000 [ 0.048307] 00000000 00000000 815fcbc4 00000000 00000000 00000000 00000000 00000000 [ 0.048334] 00000000 00000000 00000000 00000000 817f0000 00000000 00000000 817f6f34 [ 0.048361] 817f0000 818a3c00 817f0000 00000004 00000000 00000000 4dc33260 0018c933 [ 0.048389] ... [ 0.048396] Call Trace: [ 0.048399] [<8105a7bc>] show_stack+0x3c/0x140 [ 0.048424] [<8131c2a0>] dump_stack_lvl+0x60/0x80 [ 0.048440] [<8108b5c0>] __warn+0xc0/0xf4 [ 0.048454] [<8108b658>] warn_slowpath_fmt+0x64/0x10c [ 0.048467] [<810bd418>] sched_core_cpu_starting+0x198/0x240 [ 0.048483] [<810c6514>] sched_cpu_starting+0x14/0x80 [ 0.048497] [<8108c0f8>] cpuhp_invoke_callback_range+0x78/0x140 [ 0.048510] [<8108d914>] notify_cpu_starting+0x94/0x140 [ 0.048523] [<8106593c>] start_secondary+0xbc/0x280 [ 0.048539] [ 0.048543] ---[ end trace 0000000000000000 ]--- [ 0.048636] Synchronize counters for CPU 1: done.

...for each but CPU 0/boot. Basic debug printks right before the mentioned line say:

[ 0.048170] CPU: 1, smt_mask:

So smt_mask, which is sibling mask obviously, is empty when entering the function. This is critical, as sched_core_cpu_starting() calculates core-scheduling parameters only once per CPU start, and it's crucial to have all the parameters filled in at that moment (at least it uses cpu_smt_mask() which in fact is `&cpu_sibling_map[cpu]` on MIPS).

A bit of debugging led me to that set_cpu_sibling_map() performing the actual map calculation, was being invocated after notify_cpu_start(), and exactly the latter function starts CPU HP callback round (sched_core_cpu_starting() is basically a CPU HP callback). While the flow is same on ARM64 (maps after the notifier, although before calling set_cpu_online()), x86 started calculating sibling maps earlier than starting the CPU HP callbacks in Linux 4.14 (see [0] for the reference). Neither me nor my brief tests couldn't find any potential caveats in calculating the maps right after performing delay calibration, but the WARN splat is now gone. The very same debug prints now yield exactly what I expected from them:

[ 0.048433] CPU: 1, smt_mask: 0-1

[0] https://git.kernel.org/pub/scm/linux/kernel/git/mips/linux.git/commit/?id=76ce7cfe35ef

5.5 2024-07-16 CVE-2022-48844

In the Linux kernel, the following vulnerability has been resolved:

Bluetooth: hci_core: Fix leaking sent_cmd skb

sent_cmd memory is not freed before freeing hci_dev causing it to leak it contents.

CWE : Common Weakness Enumeration

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
%idName
14% (377) CWE-416 Use After Free
11% (306) CWE-476 NULL Pointer Dereference
7% (197) CWE-362 Race Condition
7% (189) CWE-119 Failure to Constrain Operations within the Bounds of a Memory Buffer
6% (166) CWE-200 Information Exposure
5% (132) CWE-20 Improper Input Validation
5% (130) CWE-787 Out-of-bounds Write
4% (124) CWE-401 Failure to Release Memory Before Removing Last Reference ('Memory L...
4% (117) CWE-125 Out-of-bounds Read
4% (106) CWE-399 Resource Management Errors
3% (100) CWE-264 Permissions, Privileges, and Access Controls
2% (73) CWE-190 Integer Overflow or Wraparound
2% (52) CWE-189 Numeric Errors
1% (46) CWE-667 Insufficient Locking
1% (46) CWE-400 Uncontrolled Resource Consumption ('Resource Exhaustion')
1% (36) CWE-415 Double Free
1% (36) CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflo...
0% (25) CWE-269 Improper Privilege Management
0% (17) CWE-770 Allocation of Resources Without Limits or Throttling
0% (17) CWE-665 Improper Initialization
0% (16) CWE-369 Divide By Zero
0% (13) CWE-772 Missing Release of Resource after Effective Lifetime
0% (12) CWE-755 Improper Handling of Exceptional Conditions
0% (12) CWE-17 Code
0% (11) CWE-310 Cryptographic Issues

CAPEC : Common Attack Pattern Enumeration & Classification

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Name
CAPEC-1 Accessing Functionality Not Properly Constrained by ACLs
CAPEC-8 Buffer Overflow in an API Call
CAPEC-9 Buffer Overflow in Local Command-Line Utilities
CAPEC-10 Buffer Overflow via Environment Variables
CAPEC-14 Client-side Injection-induced Buffer Overflow
CAPEC-17 Accessing, Modifying or Executing Executable Files
CAPEC-24 Filter Failure through Buffer Overflow
CAPEC-42 MIME Conversion
CAPEC-44 Overflow Binary Resource File
CAPEC-45 Buffer Overflow via Symbolic Links
CAPEC-46 Overflow Variables and Tags
CAPEC-47 Buffer Overflow via Parameter Expansion
CAPEC-59 Session Credential Falsification through Prediction
CAPEC-60 Reusing Session IDs (aka Session Replay)
CAPEC-61 Session Fixation
CAPEC-62 Cross Site Request Forgery (aka Session Riding)
CAPEC-92 Forced Integer Overflow
CAPEC-100 Overflow Buffers
CAPEC-112 Brute Force
CAPEC-122 Exploitation of Authorization
CAPEC-128 Integer Attacks
CAPEC-168 Windows ::DATA Alternate Data Stream
CAPEC-180 Exploiting Incorrectly Configured Access Control Security Levels
CAPEC-232 Exploitation of Privilege/Trust
CAPEC-234 Hijacking a privileged process

SAINT Exploits

Description Link
Linux kernel __sock_diag_rcv_msg Netlink message privilege elevation More info here
Ubuntu overlayfs privilege elevation More info here
Linux kernel futex_requeue privilege elevation More info here
Linux Dirty COW Local File Overwrite More info here

Open Source Vulnerability Database (OSVDB)

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Description
78509 Linux Kernel /proc/<pid>/mem Access Restriction Weakness Local Privileg...
78303 Linux Kernel sctp_rcv() / sctp_accept() Socket Lock Race Remote DoS
78302 Linux Kernel m_stop() Implementation Local DoS
78301 Linux Kernel NSF O_Direct Implementation Local DoS
78264 Linux Kernel KVM syscall Instruction Executable Handling Local DoS
78226 Linux Kernel fs/xfs/xfs_acl.c xfs_acl_from_disk() Function Memory Corruption
78225 Linux Kernel net/ipv4/igmp.c igmp_heard_query() Function IGMP Query Parsing R...
78014 Linux Kernel SG_IO SCSI IOCTL Command Parsing Local Privilege Escalation
77780 Linux Kernel B.A.T.M.A.N. net/batman/icmp_socket.c bat_socket_read() Packet P...
77684 Linux Kernel OMAP4 Bridge Networking Interface Network Packet Parsing Remote DoS
77683 Linux Kernel HFS File System Mount Local Privilege Escalation
77626 Linux Kernel kvm_vm_ioctl_assign_device Function /dev/kym Local DoS
77625 Linux Kernel NFSv4 Mount mknod(2) Syscall Local DoS
77485 Linux Kernel /mm/oom_kill.c Local Overflow
77452 OpenFabrics Enterprise Distribution (OFED) RDS_FLAG_CONG_BITMAP Flagged RDS M...
77360 Linux Kernel TX_SKB_SHARING Local DoS
77355 Linux Kernel clock_gettime() Call Parsing Local DoS
77295 Linux Kernel UFO IPv6 UDP Datagram Parsing Remote DoS
77293 Linux Kernel b43 Driver Wireless Interface Frame Parsing Remote DoS
76805 Linux Kernel net/core/net_namespace.c Network Namespace Cleanup Weakness Remo...
76796 Linux Kernel taskstats Access Restriction Weakness Local Information Disclosure
76793 Linux Kernel security/apparmor/lsm.c apparmor_setprocattr() Function /attr/cu...
76666 Linux Kernel ext4 Extent Splitting BUG_ON() Local DoS
76641 Linux Kernel fs/xfs/xfs_vnodeops.c xfs_readlink() Function XFS Image Handling...
76639 Linux Kernel NULL Pointer Dereference ghash Algorithm Local DoS

ExploitDB Exploits

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Description
35370 Linux Kernel libfutex Local Root for RHEL/CentOS 7.0.1406
35161 Linux Local Root => 2.6.39 (32-bit & 64-bit) - Mempodipper #2
34923 Linux Kernel remount FUSE Exploit
34134 Linux Kernel ptrace/sysret - Local Privilege Escalation
33824 Linux Kernel <= 3.13 - Local Privilege Escalation PoC (gid)
33516 Linux kernel 3.14-rc1 <= 3.15-rc4 - Raw Mode PTY Local Echo Race Condition...
33336 Linux Kernel 3.3-3.8 - SOCK_DIAG Local Root Exploit
32926 Linux group_info refcounter - Overflow Memory Corruption
31574 Linux ARM - Local Root Exploit
31347 linux 3.4+ local root (CONFIG_X86_X32=y)
31346 Linux 3.4+ Arbitrary write with CONFIG_X86_X32
30605 Linux Kernel 2.6.x ALSA snd-page-alloc Local Proc File Information Disclosure...
29822 Man Command -H Flag Local Buffer Overflow Vulnerability
26131 Linux kernel perf_swevent_init - Local root Exploit
24696 Linux Kernel 2.6.x IPTables Logging Rules Integer Underflow Vulnerability
18411 Mempodipper - Linux Local Root for >=2.6.39, 32-bit and 64-bit
18378 Linux IGMP Remote Denial Of Service (Introduced in linux-2.6.36)
17787 Linux Kernel < 2.6.36.2 Econet Privilege Escalation Exploit
16973 Linux <= 2.6.37-rc1 serial_core TIOCGICOUNT Leak Exploit
16952 Linux Kernel < 2.6.37-rc2 TCP_MAXSEG Kernel Panic DoS
16263 Linux Kernel <= 2.6.37 Local Kernel Denial of Service
15774 Linux Kernel < 2.6.37-rc2 ACPI custom_method Privilege Escalation
15704 Linux Kernel <= 2.6.37 - Local Privilege Escalation
15344 Linux Kernel VIDIOCSMICROCODE IOCTL Local Memory Overwrite Vulnerability
15285 Linux RDS Protocol Local Privilege Escalation

OpenVAS Exploits

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Description
2013-09-18 Name : Debian Security Advisory DSA 2389-1 (linux-2.6 - privilege escalation/denial ...
File : nvt/deb_2389_1.nasl
2013-09-18 Name : Debian Security Advisory DSA 2443-1 (linux-2.6 - privilege escalation/denial ...
File : nvt/deb_2443_1.nasl
2013-09-18 Name : Debian Security Advisory DSA 2469-1 (linux-2.6 - privilege escalation/denial ...
File : nvt/deb_2469_1.nasl
2012-12-26 Name : CentOS Update for kernel CESA-2012:1580 centos6
File : nvt/gb_CESA-2012_1580_kernel_centos6.nasl
2012-12-26 Name : RedHat Update for kernel RHSA-2012:1580-01
File : nvt/gb_RHSA-2012_1580-01_kernel.nasl
2012-12-26 Name : Ubuntu Update for linux USN-1669-1
File : nvt/gb_ubuntu_USN_1669_1.nasl
2012-12-26 Name : Ubuntu Update for linux-ti-omap4 USN-1670-1
File : nvt/gb_ubuntu_USN_1670_1.nasl
2012-12-26 Name : Ubuntu Update for linux USN-1671-1
File : nvt/gb_ubuntu_USN_1671_1.nasl
2012-12-26 Name : Ubuntu Update for linux-ti-omap4 USN-1673-1
File : nvt/gb_ubuntu_USN_1673_1.nasl
2012-12-26 Name : Ubuntu Update for linux USN-1677-1
File : nvt/gb_ubuntu_USN_1677_1.nasl
2012-12-26 Name : Ubuntu Update for linux-lts-backport-oneiric USN-1678-1
File : nvt/gb_ubuntu_USN_1678_1.nasl
2012-12-26 Name : Ubuntu Update for linux-ti-omap4 USN-1679-1
File : nvt/gb_ubuntu_USN_1679_1.nasl
2012-12-18 Name : Fedora Update for kernel FEDORA-2012-20240
File : nvt/gb_fedora_2012_20240_kernel_fc16.nasl
2012-12-14 Name : Ubuntu Update for linux-ec2 USN-1664-1
File : nvt/gb_ubuntu_USN_1664_1.nasl
2012-12-11 Name : Ubuntu Update for linux USN-1660-1
File : nvt/gb_ubuntu_USN_1660_1.nasl
2012-12-11 Name : Ubuntu Update for linux USN-1661-1
File : nvt/gb_ubuntu_USN_1661_1.nasl
2012-12-06 Name : CentOS Update for kernel CESA-2012:1540 centos5
File : nvt/gb_CESA-2012_1540_kernel_centos5.nasl
2012-12-06 Name : RedHat Update for kernel RHSA-2012:1540-01
File : nvt/gb_RHSA-2012_1540-01_kernel.nasl
2012-12-06 Name : Ubuntu Update for linux-ec2 USN-1653-1
File : nvt/gb_ubuntu_USN_1653_1.nasl
2012-12-04 Name : Fedora Update for kernel FEDORA-2012-19337
File : nvt/gb_fedora_2012_19337_kernel_fc17.nasl
2012-12-04 Name : Ubuntu Update for linux USN-1644-1
File : nvt/gb_ubuntu_USN_1644_1.nasl
2012-12-04 Name : Ubuntu Update for linux-ti-omap4 USN-1645-1
File : nvt/gb_ubuntu_USN_1645_1.nasl
2012-12-04 Name : Ubuntu Update for linux USN-1646-1
File : nvt/gb_ubuntu_USN_1646_1.nasl
2012-12-04 Name : Ubuntu Update for linux-ti-omap4 USN-1647-1
File : nvt/gb_ubuntu_USN_1647_1.nasl
2012-12-04 Name : Ubuntu Update for linux USN-1648-1
File : nvt/gb_ubuntu_USN_1648_1.nasl

Information Assurance Vulnerability Management (IAVM)

id Description
2015-A-0150 Multiple Security Vulnerabilities in Juniper Networks CTPView
Severity: Category I - VMSKEY: V0061073
2012-A-0153 Multiple Vulnerabilities in VMware ESX 4.0 and ESXi 4.0
Severity: Category I - VMSKEY: V0033884
2012-A-0148 Multiple Vulnerabilities in VMware ESXi 4.1 and ESX 4.1
Severity: Category I - VMSKEY: V0033794
2012-A-0136 Multiple Vulnerabilities in Juniper Network Management Products
Severity: Category I - VMSKEY: V0033662
2012-A-0073 Multiple Vulnerabilities in VMware ESXi 4.1 and ESX 4.1
Severity: Category I - VMSKEY: V0032171
2012-A-0056 Multiple Vulnerabilities in VMWare ESX 4.0 and ESXi 4.0
Severity: Category I - VMSKEY: V0031979
2012-A-0020 Multiple Vulnerabilities in VMware ESX 4.1 and ESXi 4.1
Severity: Category I - VMSKEY: V0031252
2011-A-0147 Multiple Vulnerabilities in VMware ESX and ESXi
Severity: Category I - VMSKEY: V0030545
2011-A-0075 Multiple Vulnerabilities in VMware Products
Severity: Category I - VMSKEY: V0028311
2011-A-0066 Multiple Vulnerabilities in VMware Products
Severity: Category I - VMSKEY: V0027158
2010-B-0085 Linux Kernel Privilege Escalation Vulnerability
Severity: Category I - VMSKEY: V0025410
2010-A-0037 Multiple Vulnerabilities in Linux Kernel
Severity: Category I - VMSKEY: V0022704
2010-A-0015 Multiple Vulnerabilities in Red Hat Linux Kernel
Severity: Category I - VMSKEY: V0022631
2010-A-0001 Multiple Vulnerabilities in Linux Kernel
Severity: Category I - VMSKEY: V0022180
2009-A-0105 Multiple Vulnerabilities in VMware Products
Severity: Category I - VMSKEY: V0021867

Snort® IPS/IDS

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
Date Description
2014-01-10 record route rr denial of service attempt
RuleID : 8730 - Type : PROTOCOL-ICMP - Revision : 6
2014-01-10 IPv6 packets encapsulated in IPv4
RuleID : 8446 - Type : POLICY-OTHER - Revision : 8
2020-11-19 Linux kernel af_packet tpacket_rcv integer overflow attempt
RuleID : 56052 - Type : OS-LINUX - Revision : 1
2020-11-19 Linux kernel af_packet tpacket_rcv integer overflow attempt
RuleID : 56051 - Type : OS-LINUX - Revision : 1
2019-09-26 Google Android Kernel local denial of service attempt
RuleID : 51291 - Type : OS-MOBILE - Revision : 1
2019-09-26 Google Android Kernel local denial of service attempt
RuleID : 51290 - Type : OS-MOBILE - Revision : 1
2019-01-15 (tcp)TCPdataoffsetislessthan5
RuleID : 46 - Type : - Revision : 2
2017-11-21 Linux kernel nfsd nfsd4_layout_verify out of bounds read attempt
RuleID : 44638 - Type : PROTOCOL-RPC - Revision : 1
2017-11-21 Linux kernel nfsd nfsd4_layout_verify out of bounds read attempt
RuleID : 44637 - Type : PROTOCOL-RPC - Revision : 1
2017-10-10 Linux kernel sctp_rcv_ootb invalid chunk length DoS attempt
RuleID : 44309 - Type : OS-LINUX - Revision : 1
2017-10-10 Linux kernel sctp_rcv_ootb invalid chunk length DoS attempt
RuleID : 44308 - Type : OS-LINUX - Revision : 1
2017-08-24 Linux kernel SCTP invalid chunk length denial of service attempt
RuleID : 43692 - Type : OS-LINUX - Revision : 1
2017-07-18 Linux kernel NFSv3 malformed WRITE arbitrary memory read attempt
RuleID : 43189 - Type : PROTOCOL-RPC - Revision : 2
2017-07-18 Linux kernel NFSv2 malformed WRITE arbitrary memory read attempt
RuleID : 43188 - Type : PROTOCOL-RPC - Revision : 2
2017-01-18 Linux net af_packet.c tpacket version race condition use after free attempt
RuleID : 41028 - Type : OS-LINUX - Revision : 2
2017-01-18 Linux net af_packet.c tpacket version race condition use after free attempt
RuleID : 41027 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40566 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40565 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40564 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40563 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40562 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40561 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40560 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40543 - Type : OS-LINUX - Revision : 2
2016-11-30 Linux kernel madvise race condition attempt
RuleID : 40542 - Type : OS-LINUX - Revision : 2

Nessus® Vulnerability Scanner

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Description
2019-01-17 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-509c133845.nasl - Type: ACT_GATHER_INFO
2019-01-17 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-f812c9fb22.nasl - Type: ACT_GATHER_INFO
2019-01-15 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-337484d88b.nasl - Type: ACT_GATHER_INFO
2019-01-15 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-b0f7a7b74b.nasl - Type: ACT_GATHER_INFO
2019-01-14 Name: The remote Virtuozzo host is missing multiple security updates.
File: Virtuozzo_VZA-2016-104.nasl - Type: ACT_GATHER_INFO
2019-01-14 Name: The remote Amazon Linux AMI host is missing a security update.
File: ala_ALAS-2019-1145.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-072.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing multiple security updates.
File: Virtuozzo_VZA-2018-075.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-077.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-085.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-086.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-088.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-089.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote Amazon Linux 2 host is missing a security update.
File: al2_ALAS-2019-1145.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote device is affected by multiple vulnerabilities.
File: juniper_space_jsa10917_183R1.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote device is affected by multiple vulnerabilities.
File: juniper_space_jsa10917_184R1.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-0edb45d9db.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-1621b2204a.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-272cf2f9f4.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-2c6bd93875.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-3857a8b41a.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing a security update.
File: fedora_2018-50075276e8.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-5453baa4af.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-5904d0794d.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing a security update.
File: fedora_2018-5926c0ffc8.nasl - Type: ACT_GATHER_INFO