This CPE summary could be partial or incomplete. Please contact us for a detailed listing.

Summary

Detail
Vendor Linux First view 2015-11-16
Product Linux Kernel Last view 2024-07-17
Version 4.9.53 Type Os
Update *  
Edition *  
Language *  
Sofware Edition *  
Target Software *  
Target Hardware *  
Other *  
 
CPE Product cpe:2.3:o:linux:linux_kernel

Activity : Overall

Related : CVE

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
  Date Alert Description
5.5 2024-07-17 CVE-2024-41010

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix too early release of tcx_entry

Pedro Pinto and later independently also Hyunwoo Kim and Wongi Lee reported an issue that the tcx_entry can be released too early leading to a use after free (UAF) when an active old-style ingress or clsact qdisc with a shared tc block is later replaced by another ingress or clsact instance.

Essentially, the sequence to trigger the UAF (one example) can be as follows:

1. A network namespace is created
2. An ingress qdisc is created. This allocates a tcx_entry, and
&tcx_entry->miniq is stored in the qdisc's miniqp->p_miniq. At the
same time, a tcf block with index 1 is created.
3. chain0 is attached to the tcf block. chain0 must be connected to
the block linked to the ingress qdisc to later reach the function
tcf_chain0_head_change_cb_del() which triggers the UAF.
4. Create and graft a clsact qdisc. This causes the ingress qdisc
created in step 1 to be removed, thus freeing the previously linked
tcx_entry:

rtnetlink_rcv_msg()
=> tc_modify_qdisc()
=> qdisc_create()
=> clsact_init() [a]
=> qdisc_graft()
=> qdisc_destroy()
=> __qdisc_destroy()
=> ingress_destroy() [b]
=> tcx_entry_free()
=> kfree_rcu() // tcx_entry freed

5. Finally, the network namespace is closed. This registers the
cleanup_net worker, and during the process of releasing the
remaining clsact qdisc, it accesses the tcx_entry that was
already freed in step 4, causing the UAF to occur:

cleanup_net()
=> ops_exit_list()
=> default_device_exit_batch()
=> unregister_netdevice_many()
=> unregister_netdevice_many_notify()
=> dev_shutdown()
=> qdisc_put()
=> clsact_destroy() [c]
=> tcf_block_put_ext()
=> tcf_chain0_head_change_cb_del()
=> tcf_chain_head_change_item()
=> clsact_chain_head_change()
=> mini_qdisc_pair_swap() // UAF

There are also other variants, the gist is to add an ingress (or clsact) qdisc with a specific shared block, then to replace that qdisc, waiting for the tcx_entry kfree_rcu() to be executed and subsequently accessing the current active qdisc's miniq one way or another.

The correct fix is to turn the miniq_active boolean into a counter. What can be observed, at step 2 above, the counter transitions from 0->1, at step [a] from 1->2 (in order for the miniq object to remain active during the replacement), then in [b] from 2->1 and finally [c] 1->0 with the eventual release. The reference counter in general ranges from [0,2] and it does not need to be atomic since all access to the counter is protected by the rtnl mutex. With this in place, there is no longer a UAF happening and the tcx_entry is freed at the correct time.

5.5 2024-07-17 CVE-2024-41009

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix overrunning reservations in ringbuf

The BPF ring buffer internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters: consumer_pos is the consumer counter to show which logical position the consumer consumed the data, and producer_pos which is the producer counter denoting the amount of data reserved by all producers.

Each time a record is reserved, the producer that "owns" the record will successfully advance producer counter. In user space each time a record is read, the consumer of the data advanced the consumer counter once it finished processing. Both counters are stored in separate pages so that from user space, the producer counter is read-only and the consumer counter is read-write.

One aspect that simplifies and thus speeds up the implementation of both producers and consumers is how the data area is mapped twice contiguously back-to-back in the virtual memory, allowing to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory.

Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for book-keeping the length and offset, and is inaccessible to the BPF program. Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ` for the BPF program to use. Bing-Jhong and Muhammad reported that it is however possible to make a second allocated memory chunk overlapping with the first chunk and as a result, the BPF program is now able to edit first chunk's header.

For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in [0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets allocate a chunk B with size 0x3000. This will succeed because consumer_pos was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask` check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data pages. This means that chunk B at [0x4000,0x4008] is chunk A's header. bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong page and could cause a crash.

Fix it by calculating the oldest pending_pos and check whether the range from the oldest outstanding record to the newest would span beyond the ring buffer size. If that is the case, then reject the request. We've tested with the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh) before/after the fix and while it seems a bit slower on some benchmarks, it is still not significantly enough to matter.

4.7 2024-07-16 CVE-2022-48842

In the Linux kernel, the following vulnerability has been resolved:

ice: Fix race condition during interface enslave

Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again.

Reproducer: ``` #!/bin/sh

ip link add lag0 type bond mode 1 miimon 100 ip link set lag0

for n in {1..10}; do
echo Cycle: $n
ip link set ens7f0 master lag0
sleep 1
ip link set ens7f0 nomaster done ```

This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca

1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev()
is called from ice_service_task() context, aux device is created
and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under
RTNL lock and that notifier calls ice_unplug_aux_dev(). That
function tries to take aux device->lock but this is already taken
by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already
taken in step 2 4. Dead-lock

The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev()
call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set
then ice_unplug_aux_dev() is called. If it is set (in other words
plugging of aux device was requested and ice_plug_aux_dev() is
potentially running) then the function only clears the ---truncated---

5.5 2024-07-16 CVE-2022-48841

In the Linux kernel, the following vulnerability has been resolved:

ice: fix NULL pointer dereference in ice_update_vsi_tx_ring_stats()

It is possible to do NULL pointer dereference in routine that updates Tx ring stats. Currently only stats and bytes are updated when ring pointer is valid, but later on ring is accessed to propagate gathered Tx stats onto VSI stats.

Change the existing logic to move to next ring when ring is NULL.

5.5 2024-07-16 CVE-2022-48840

In the Linux kernel, the following vulnerability has been resolved:

iavf: Fix hang during reboot/shutdown

Recent commit 974578017fc1 ("iavf: Add waiting so the port is initialized in remove") adds a wait-loop at the beginning of iavf_remove() to ensure that port initialization is finished prior unregistering net device. This causes a regression in reboot/shutdown scenario because in this case callback iavf_shutdown() is called and this callback detaches the device, makes it down if it is running and sets its state to __IAVF_REMOVE. Later shutdown callback of associated PF driver (e.g. ice_shutdown) is called. That callback calls among other things sriov_disable() that calls indirectly iavf_remove() (see stack trace below). As the adapter state is already __IAVF_REMOVE then the mentioned loop is end-less and shutdown process hangs.

The patch fixes this by checking adapter's state at the beginning of iavf_remove() and skips the rest of the function if the adapter is already in remove state (shutdown is in progress).

Reproducer: 1. Create VF on PF driven by ice or i40e driver 2. Ensure that the VF is bound to iavf driver 3. Reboot

[52625.981294] sysrq: SysRq : Show Blocked State [52625.988377] task:reboot state:D stack: 0 pid:17359 ppid: 1 f2 [52625.996732] Call Trace: [52625.999187] __schedule+0x2d1/0x830 [52626.007400] schedule+0x35/0xa0 [52626.010545] schedule_hrtimeout_range_clock+0x83/0x100 [52626.020046] usleep_range+0x5b/0x80 [52626.023540] iavf_remove+0x63/0x5b0 [iavf] [52626.027645] pci_device_remove+0x3b/0xc0 [52626.031572] device_release_driver_internal+0x103/0x1f0 [52626.036805] pci_stop_bus_device+0x72/0xa0 [52626.040904] pci_stop_and_remove_bus_device+0xe/0x20 [52626.045870] pci_iov_remove_virtfn+0xba/0x120 [52626.050232] sriov_disable+0x2f/0xe0 [52626.053813] ice_free_vfs+0x7c/0x340 [ice] [52626.057946] ice_remove+0x220/0x240 [ice] [52626.061967] ice_shutdown+0x16/0x50 [ice] [52626.065987] pci_device_shutdown+0x34/0x60 [52626.070086] device_shutdown+0x165/0x1c5 [52626.074011] kernel_restart+0xe/0x30 [52626.077593] __do_sys_reboot+0x1d2/0x210 [52626.093815] do_syscall_64+0x5b/0x1a0 [52626.097483] entry_SYSCALL_64_after_hwframe+0x65/0xca

5.5 2024-07-16 CVE-2022-48839

In the Linux kernel, the following vulnerability has been resolved:

net/packet: fix slab-out-of-bounds access in packet_recvmsg()

syzbot found that when an AF_PACKET socket is using PACKET_COPY_THRESH and mmap operations, tpacket_rcv() is queueing skbs with garbage in skb->cb[], triggering a too big copy [1]

Presumably, users of af_packet using mmap() already gets correct metadata from the mapped buffer, we can simply make sure to clear 12 bytes that might be copied to user space later.

BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:225 [inline] BUG: KASAN: stack-out-of-bounds in packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489 Write of size 165 at addr ffffc9000385fb78 by task syz-executor233/3631

CPU: 0 PID: 3631 Comm: syz-executor233 Not tainted 5.17.0-rc7-syzkaller-02396-g0b3660695e80 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace:

__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0xf/0x336 mm/kasan/report.c:255
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
memcpy+0x39/0x60 mm/kasan/shadow.c:66
memcpy include/linux/fortify-string.h:225 [inline]
packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fdfd5954c29 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffcf8e71e48 EFLAGS: 00000246 ORIG_RAX: 000000000000002f RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fdfd5954c29 RDX: 0000000000000000 RSI: 0000000020000500 RDI: 0000000000000005 RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffcf8e71e60 R13: 00000000000f4240 R14: 000000000000c1ff R15: 00007ffcf8e71e54

addr ffffc9000385fb78 is located in stack of task syz-executor233/3631 at offset 32 in frame:
____sys_recvmsg+0x0/0x600 include/linux/uio.h:246

this frame has 1 object:
[32, 160) 'addr'

Memory state around the buggy address:
ffffc9000385fa80: 00 04 f3 f3 f3 f3 f3 00 00 00 00 00 00 00 00 00
ffffc9000385fb00: 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 >ffffc9000385fb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3
^
ffffc9000385fc00: f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 f1
ffffc9000385fc80: f1 f1 f1 00 f2 f2 f2 00 f2 f2 f2 00 00 00 00 00 ==================================================================

7.8 2024-07-16 CVE-2022-48837

In the Linux kernel, the following vulnerability has been resolved:

usb: gadget: rndis: prevent integer overflow in rndis_set_response()

If "BufOffset" is very large the "BufOffset + 8" operation can have an integer overflow.

7.8 2024-07-16 CVE-2022-48834

In the Linux kernel, the following vulnerability has been resolved:

usb: usbtmc: Fix bug in pipe direction for control transfers

The syzbot fuzzer reported a minor bug in the usbtmc driver:

usb 5-1: BOGUS control dir, pipe 80001e80 doesn't match bRequestType 0 WARNING: CPU: 0 PID: 3813 at drivers/usb/core/urb.c:412 usb_submit_urb+0x13a5/0x1970 drivers/usb/core/urb.c:410 Modules linked in: CPU: 0 PID: 3813 Comm: syz-executor122 Not tainted 5.17.0-rc5-syzkaller-00306-g2293be58d6a1 #0 ... Call Trace:

usb_start_wait_urb+0x113/0x530 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x2a5/0x4b0 drivers/usb/core/message.c:153
usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1947 [inline]

The problem is that usbtmc_ioctl_request() uses usb_rcvctrlpipe() for all of its transfers, whether they are in or out. It's easy to fix.

3.3 2024-07-15 CVE-2024-41007

In the Linux kernel, the following vulnerability has been resolved:

tcp: avoid too many retransmit packets

If a TCP socket is using TCP_USER_TIMEOUT, and the other peer retracted its window to zero, tcp_retransmit_timer() can retransmit a packet every two jiffies (2 ms for HZ=1000), for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.

The fix is to make sure tcp_rtx_probe0_timed_out() takes icsk->icsk_user_timeout into account.

Before blamed commit, the socket would not timeout after icsk->icsk_user_timeout, but would use standard exponential backoff for the retransmits.

Also worth noting that before commit e89688e3e978 ("net: tcp: fix unexcepted socket die when snd_wnd is 0"), the issue would last 2 minutes instead of 4.

5.5 2024-07-05 CVE-2024-39485

In the Linux kernel, the following vulnerability has been resolved:

media: v4l: async: Properly re-initialise notifier entry in unregister

The notifier_entry of a notifier is not re-initialised after unregistering the notifier. This leads to dangling pointers being left there so use list_del_init() to return the notifier_entry an empty list.

5.5 2024-07-05 CVE-2024-39484

In the Linux kernel, the following vulnerability has been resolved:

mmc: davinci: Don't strip remove function when driver is builtin

Using __exit for the remove function results in the remove callback being discarded with CONFIG_MMC_DAVINCI=y. When such a device gets unbound (e.g. using sysfs or hotplug), the driver is just removed without the cleanup being performed. This results in resource leaks. Fix it by compiling in the remove callback unconditionally.

This also fixes a W=1 modpost warning:

WARNING: modpost: drivers/mmc/host/davinci_mmc: section mismatch in reference: davinci_mmcsd_driver+0x10 (section: .data) -> davinci_mmcsd_remove (section: .exit.text)

5.5 2024-07-05 CVE-2024-39483

In the Linux kernel, the following vulnerability has been resolved:

KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked

When requesting an NMI window, WARN on vNMI support being enabled if and only if NMIs are actually masked, i.e. if the vCPU is already handling an NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of view) is to inject one NMI and pend the other. When using vNMI, KVM pends the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected).

However, if KVM can't immediately inject an NMI, e.g. because the vCPU is in an STI shadow or is running with GIF=0, then KVM will request an NMI window and trigger the WARN (but still function correctly).

Whether or not the GIF=0 case makes sense is debatable, as the intent of KVM's behavior is to provide functionality that is as close to real hardware as possible. E.g. if two NMIs are sent in quick succession, the probability of both NMIs arriving in an STI shadow is infinitesimally low on real hardware, but significantly larger in a virtual environment, e.g. if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't as clear cut, because the window where two NMIs can collide is much larger in bare metal (though still small).

That said, KVM should not have divergent behavior for the GIF=0 case based on whether or not vNMI support is enabled. And KVM has allowed simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400 ("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be modified without a *really* good reason to do so, and if KVM's behavior were to be modified, it should be done irrespective of vNMI support.

5.5 2024-07-05 CVE-2024-39482

In the Linux kernel, the following vulnerability has been resolved:

bcache: fix variable length array abuse in btree_iter

btree_iter is used in two ways: either allocated on the stack with a fixed size MAX_BSETS, or from a mempool with a dynamic size based on the specific cache set. Previously, the struct had a fixed-length array of size MAX_BSETS which was indexed out-of-bounds for the dynamically-sized iterators, which causes UBSAN to complain.

This patch uses the same approach as in bcachefs's sort_iter and splits the iterator into a btree_iter with a flexible array member and a btree_iter_stack which embeds a btree_iter as well as a fixed-length data array.

5.5 2024-07-05 CVE-2024-39481

In the Linux kernel, the following vulnerability has been resolved:

media: mc: Fix graph walk in media_pipeline_start

The graph walk tries to follow all links, even if they are not between pads. This causes a crash with, e.g. a MEDIA_LNK_FL_ANCILLARY_LINK link.

Fix this by allowing the walk to proceed only for MEDIA_LNK_FL_DATA_LINK links.

7.8 2024-07-05 CVE-2024-39480

In the Linux kernel, the following vulnerability has been resolved:

kdb: Fix buffer overflow during tab-complete

Currently, when the user attempts symbol completion with the Tab key, kdb will use strncpy() to insert the completed symbol into the command buffer. Unfortunately it passes the size of the source buffer rather than the destination to strncpy() with predictably horrible results. Most obviously if the command buffer is already full but cp, the cursor position, is in the middle of the buffer, then we will write past the end of the supplied buffer.

Fix this by replacing the dubious strncpy() calls with memmove()/memcpy() calls plus explicit boundary checks to make sure we have enough space before we start moving characters around.

7.8 2024-07-05 CVE-2024-39479

In the Linux kernel, the following vulnerability has been resolved:

drm/i915/hwmon: Get rid of devm

When both hwmon and hwmon drvdata (on which hwmon depends) are device managed resources, the expectation, on device unbind, is that hwmon will be released before drvdata. However, in i915 there are two separate code paths, which both release either drvdata or hwmon and either can be released before the other. These code paths (for device unbind) are as follows (see also the bug referenced below):

Call Trace: release_nodes+0x11/0x70 devres_release_group+0xb2/0x110 component_unbind_all+0x8d/0xa0 component_del+0xa5/0x140 intel_pxp_tee_component_fini+0x29/0x40 [i915] intel_pxp_fini+0x33/0x80 [i915] i915_driver_remove+0x4c/0x120 [i915] i915_pci_remove+0x19/0x30 [i915] pci_device_remove+0x32/0xa0 device_release_driver_internal+0x19c/0x200 unbind_store+0x9c/0xb0

and

Call Trace: release_nodes+0x11/0x70 devres_release_all+0x8a/0xc0 device_unbind_cleanup+0x9/0x70 device_release_driver_internal+0x1c1/0x200 unbind_store+0x9c/0xb0

This means that in i915, if use devm, we cannot gurantee that hwmon will always be released before drvdata. Which means that we have a uaf if hwmon sysfs is accessed when drvdata has been released but hwmon hasn't.

The only way out of this seems to be do get rid of devm_ and release/free everything explicitly during device unbind.

v2: Change commit message and other minor code changes v3: Cleanup from i915_hwmon_register on error (Armin Wolf) v4: Eliminate potential static analyzer warning (Rodrigo)
Eliminate fetch_and_zero (Jani) v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi)

5.5 2024-07-05 CVE-2024-39478

In the Linux kernel, the following vulnerability has been resolved:

crypto: starfive - Do not free stack buffer

RSA text data uses variable length buffer allocated in software stack. Calling kfree on it causes undefined behaviour in subsequent operations.

5.5 2024-07-05 CVE-2024-39477

In the Linux kernel, the following vulnerability has been resolved:

mm/hugetlb: do not call vma_add_reservation upon ENOMEM

sysbot reported a splat [1] on __unmap_hugepage_range(). This is because vma_needs_reservation() can return -ENOMEM if allocate_file_region_entries() fails to allocate the file_region struct for the reservation.

Check for that and do not call vma_add_reservation() if that is the case, otherwise region_abort() and region_del() will see that we do not have any file_regions.

If we detect that vma_needs_reservation() returned -ENOMEM, we clear the hugetlb_restore_reserve flag as if this reservation was still consumed, so free_huge_folio() will not increment the resv count.

[1] https://lore.kernel.org/linux-mm/0000000000004096100617c58d54@google.com/T/#ma5983bc1ab18a54910da83416b3f89f3c7ee43aa

5.5 2024-07-05 CVE-2024-39476

In the Linux kernel, the following vulnerability has been resolved:

md/raid5: fix deadlock that raid5d() wait for itself to clear MD_SB_CHANGE_PENDING

Xiao reported that lvm2 test lvconvert-raid-takeover.sh can hang with small possibility, the root cause is exactly the same as commit bed9e27baf52 ("Revert "md/raid5: Wait for MD_SB_CHANGE_PENDING in raid5d"")

However, Dan reported another hang after that, and junxiao investigated the problem and found out that this is caused by plugged bio can't issue from raid5d().

Current implementation in raid5d() has a weird dependence:

1) md_check_recovery() from raid5d() must hold 'reconfig_mutex' to clear
MD_SB_CHANGE_PENDING; 2) raid5d() handles IO in a deadloop, until all IO are issued; 3) IO from raid5d() must wait for MD_SB_CHANGE_PENDING to be cleared;

This behaviour is introduce before v2.6, and for consequence, if other context hold 'reconfig_mutex', and md_check_recovery() can't update super_block, then raid5d() will waste one cpu 100% by the deadloop, until 'reconfig_mutex' is released.

Refer to the implementation from raid1 and raid10, fix this problem by skipping issue IO if MD_SB_CHANGE_PENDING is still set after md_check_recovery(), daemon thread will be woken up when 'reconfig_mutex' is released. Meanwhile, the hang problem will be fixed as well.

5.5 2024-07-05 CVE-2024-39475

In the Linux kernel, the following vulnerability has been resolved:

fbdev: savage: Handle err return when savagefb_check_var failed

The commit 04e5eac8f3ab("fbdev: savage: Error out if pixclock equals zero") checks the value of pixclock to avoid divide-by-zero error. However the function savagefb_probe doesn't handle the error return of savagefb_check_var. When pixclock is 0, it will cause divide-by-zero error.

5.5 2024-07-05 CVE-2024-39474

In the Linux kernel, the following vulnerability has been resolved:

mm/vmalloc: fix vmalloc which may return null if called with __GFP_NOFAIL

commit a421ef303008 ("mm: allow !GFP_KERNEL allocations for kvmalloc") includes support for __GFP_NOFAIL, but it presents a conflict with commit dd544141b9eb ("vmalloc: back off when the current task is OOM-killed"). A possible scenario is as follows:

process-a __vmalloc_node_range(GFP_KERNEL | __GFP_NOFAIL)
__vmalloc_area_node()
vm_area_alloc_pages()
--> oom-killer send SIGKILL to process-a
if (fatal_signal_pending(current)) break; --> return NULL;

To fix this, do not check fatal_signal_pending() in vm_area_alloc_pages() if __GFP_NOFAIL set.

This issue occurred during OPLUS KASAN TEST. Below is part of the log -> oom-killer sends signal to process [65731.222840] [ T1308] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,global_oom,task_memcg=/apps/uid_10198,task=gs.intelligence,pid=32454,uid=10198

[65731.259685] [T32454] Call trace: [65731.259698] [T32454] dump_backtrace+0xf4/0x118 [65731.259734] [T32454] show_stack+0x18/0x24 [65731.259756] [T32454] dump_stack_lvl+0x60/0x7c [65731.259781] [T32454] dump_stack+0x18/0x38 [65731.259800] [T32454] mrdump_common_die+0x250/0x39c [mrdump] [65731.259936] [T32454] ipanic_die+0x20/0x34 [mrdump] [65731.260019] [T32454] atomic_notifier_call_chain+0xb4/0xfc [65731.260047] [T32454] notify_die+0x114/0x198 [65731.260073] [T32454] die+0xf4/0x5b4 [65731.260098] [T32454] die_kernel_fault+0x80/0x98 [65731.260124] [T32454] __do_kernel_fault+0x160/0x2a8 [65731.260146] [T32454] do_bad_area+0x68/0x148 [65731.260174] [T32454] do_mem_abort+0x151c/0x1b34 [65731.260204] [T32454] el1_abort+0x3c/0x5c [65731.260227] [T32454] el1h_64_sync_handler+0x54/0x90 [65731.260248] [T32454] el1h_64_sync+0x68/0x6c

[65731.260269] [T32454] z_erofs_decompress_queue+0x7f0/0x2258 --> be->decompressed_pages = kvcalloc(be->nr_pages, sizeof(struct page *), GFP_KERNEL | __GFP_NOFAIL);
kernel panic by NULL pointer dereference.
erofs assume kvmalloc with __GFP_NOFAIL never return NULL. [65731.260293] [T32454] z_erofs_runqueue+0xf30/0x104c [65731.260314] [T32454] z_erofs_readahead+0x4f0/0x968 [65731.260339] [T32454] read_pages+0x170/0xadc [65731.260364] [T32454] page_cache_ra_unbounded+0x874/0xf30 [65731.260388] [T32454] page_cache_ra_order+0x24c/0x714 [65731.260411] [T32454] filemap_fault+0xbf0/0x1a74 [65731.260437] [T32454] __do_fault+0xd0/0x33c [65731.260462] [T32454] handle_mm_fault+0xf74/0x3fe0 [65731.260486] [T32454] do_mem_abort+0x54c/0x1b34 [65731.260509] [T32454] el0_da+0x44/0x94 [65731.260531] [T32454] el0t_64_sync_handler+0x98/0xb4 [65731.260553] [T32454] el0t_64_sync+0x198/0x19c

5.5 2024-07-05 CVE-2024-39473

In the Linux kernel, the following vulnerability has been resolved:

ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension

If a process module does not have base config extension then the same format applies to all of it's inputs and the process->base_config_ext is NULL, causing NULL dereference when specifically crafted topology and sequences used.

5.5 2024-07-05 CVE-2024-39472

In the Linux kernel, the following vulnerability has been resolved:

xfs: fix log recovery buffer allocation for the legacy h_size fixup

Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer.

Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation.

7.5 2024-07-05 CVE-2023-52340

The IPv6 implementation in the Linux kernel before 6.3 has a net/ipv6/route.c max_size threshold that can be consumed easily, e.g., leading to a denial of service (network is unreachable errors) when IPv6 packets are sent in a loop via a raw socket.

5.5 2024-06-24 CVE-2024-39292

In the Linux kernel, the following vulnerability has been resolved:

um: Add winch to winch_handlers before registering winch IRQ

Registering a winch IRQ is racy, an interrupt may occur before the winch is added to the winch_handlers list.

If that happens, register_winch_irq() adds to that list a winch that is scheduled to be (or has already been) freed, causing a panic later in winch_cleanup().

Avoid the race by adding the winch to the winch_handlers list before registering the IRQ, and rolling back if um_request_irq() fails.

CWE : Common Weakness Enumeration

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
%idName
21% (330) CWE-416 Use After Free
15% (236) CWE-476 NULL Pointer Dereference
7% (119) CWE-362 Race Condition
7% (114) CWE-401 Failure to Release Memory Before Removing Last Reference ('Memory L...
7% (113) CWE-787 Out-of-bounds Write
6% (102) CWE-125 Out-of-bounds Read
4% (64) CWE-119 Failure to Constrain Operations within the Bounds of a Memory Buffer
2% (41) CWE-190 Integer Overflow or Wraparound
2% (39) CWE-667 Insufficient Locking
2% (38) CWE-200 Information Exposure
2% (31) CWE-415 Double Free
1% (27) CWE-20 Improper Input Validation
1% (22) CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflo...
1% (17) CWE-770 Allocation of Resources Without Limits or Throttling
0% (13) CWE-665 Improper Initialization
0% (13) CWE-400 Uncontrolled Resource Consumption ('Resource Exhaustion')
0% (12) CWE-755 Improper Handling of Exceptional Conditions
0% (12) CWE-369 Divide By Zero
0% (10) CWE-772 Missing Release of Resource after Effective Lifetime
0% (8) CWE-668 Exposure of Resource to Wrong Sphere
0% (8) CWE-404 Improper Resource Shutdown or Release
0% (8) CWE-122 Heap-based Buffer Overflow
0% (7) CWE-754 Improper Check for Unusual or Exceptional Conditions
0% (7) CWE-203 Information Exposure Through Discrepancy
0% (6) CWE-763 Release of Invalid Pointer or Reference

Snort® IPS/IDS

Date Description
2020-11-19 Linux kernel af_packet tpacket_rcv integer overflow attempt
RuleID : 56052 - Type : OS-LINUX - Revision : 1
2020-11-19 Linux kernel af_packet tpacket_rcv integer overflow attempt
RuleID : 56051 - Type : OS-LINUX - Revision : 1
2017-11-21 Linux kernel nfsd nfsd4_layout_verify out of bounds read attempt
RuleID : 44638 - Type : PROTOCOL-RPC - Revision : 1
2017-11-21 Linux kernel nfsd nfsd4_layout_verify out of bounds read attempt
RuleID : 44637 - Type : PROTOCOL-RPC - Revision : 1
2017-07-18 Linux kernel NFSv3 malformed WRITE arbitrary memory read attempt
RuleID : 43189 - Type : PROTOCOL-RPC - Revision : 2
2017-07-18 Linux kernel NFSv2 malformed WRITE arbitrary memory read attempt
RuleID : 43188 - Type : PROTOCOL-RPC - Revision : 2

Nessus® Vulnerability Scanner

This CPE have more than 25 Relations. If you want to see a complete summary for this CPE, please contact us.
id Description
2019-01-17 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-509c133845.nasl - Type: ACT_GATHER_INFO
2019-01-17 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-f812c9fb22.nasl - Type: ACT_GATHER_INFO
2019-01-15 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-337484d88b.nasl - Type: ACT_GATHER_INFO
2019-01-15 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2019-b0f7a7b74b.nasl - Type: ACT_GATHER_INFO
2019-01-14 Name: The remote Amazon Linux AMI host is missing a security update.
File: ala_ALAS-2019-1145.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-072.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing multiple security updates.
File: Virtuozzo_VZA-2018-075.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-077.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-085.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-086.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-088.nasl - Type: ACT_GATHER_INFO
2019-01-11 Name: The remote Virtuozzo host is missing a security update.
File: Virtuozzo_VZA-2018-089.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote Amazon Linux 2 host is missing a security update.
File: al2_ALAS-2019-1145.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote device is affected by multiple vulnerabilities.
File: juniper_space_jsa10917_183R1.nasl - Type: ACT_GATHER_INFO
2019-01-10 Name: The remote device is affected by multiple vulnerabilities.
File: juniper_space_jsa10917_184R1.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-0edb45d9db.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-1621b2204a.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-272cf2f9f4.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-2c6bd93875.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-3857a8b41a.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing a security update.
File: fedora_2018-50075276e8.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-5453baa4af.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-5904d0794d.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing a security update.
File: fedora_2018-5926c0ffc8.nasl - Type: ACT_GATHER_INFO
2019-01-03 Name: The remote Fedora host is missing one or more security updates.
File: fedora_2018-59e4747e0f.nasl - Type: ACT_GATHER_INFO