Executive Summary
Informations | |||
---|---|---|---|
Name | CVE-2025-38067 | First vendor Publication | 2025-06-18 |
Vendor | Cve | Last vendor Modification | 2025-06-18 |
Security-Database Scoring CVSS v3
Cvss vector : N/A | |||
---|---|---|---|
Overall CVSS Score | NA | ||
Base Score | NA | Environmental Score | NA |
impact SubScore | NA | Temporal Score | NA |
Exploitabality Sub Score | NA | ||
Calculate full CVSS 3.0 Vectors scores |
Security-Database Scoring CVSS v2
Cvss vector : | |||
---|---|---|---|
Cvss Base Score | N/A | Attack Range | N/A |
Cvss Impact Score | N/A | Attack Complexity | N/A |
Cvss Expoit Score | N/A | Authentication | N/A |
Calculate full CVSS 2.0 Vectors scores |
Detail
In the Linux kernel, the following vulnerability has been resolved: rseq: Fix segfault on registration when rseq_cs is non-zero The rseq_cs field is documented as being set to 0 by user-space prior to registration, however this is not currently enforced by the kernel. This can result in a segfault on return to user-space if the value stored in the rseq_cs field doesn't point to a valid struct rseq_cs. The correct solution to this would be to fail the rseq registration when the rseq_cs field is non-zero. However, some older versions of glibc will reuse the rseq area of previous threads without clearing the rseq_cs field and will also terminate the process if the rseq registration fails in a secondary thread. This wasn't caught in testing because in this case the leftover rseq_cs does point to a valid struct rseq_cs. What we can do is clear the rseq_cs field on registration when it's non-zero which will prevent segfaults on registration and won't break the glibc versions that reuse rseq areas on thread creation. |
Original Source
Url : http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2025-38067 |
Sources (Detail)
Source | Url |
---|
Alert History
Date | Informations |
---|---|
2025-06-18 17:20:35 |
|