Executive Summary

Informations
Name CVE-2023-53024 First vendor Publication 2025-03-27
Vendor Cve Last vendor Modification 2025-03-28

Security-Database Scoring CVSS v3

Cvss vector : N/A
Overall CVSS Score NA
Base Score NA Environmental Score NA
impact SubScore NA Temporal Score NA
Exploitabality Sub Score NA
 
Calculate full CVSS 3.0 Vectors scores

Security-Database Scoring CVSS v2

Cvss vector :
Cvss Base Score N/A Attack Range N/A
Cvss Impact Score N/A Attack Complexity N/A
Cvss Expoit Score N/A Authentication N/A
Calculate full CVSS 2.0 Vectors scores

Detail

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation

To mitigate Spectre v4, 2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation") inserts lfence instructions after 1) initializing a stack slot and 2) spilling a pointer to the stack.

However, this does not cover cases where a stack slot is first initialized with a pointer (subject to sanitization) but then overwritten with a scalar (not subject to sanitization because the slot was already initialized). In this case, the second write may be subject to speculative store bypass (SSB) creating a speculative pointer-as-scalar type confusion. This allows the program to subsequently leak the numerical pointer value using, for example, a branch-based cache side channel.

To fix this, also sanitize scalars if they write a stack slot that previously contained a pointer. Assuming that pointer-spills are only generated by LLVM on register-pressure, the performance impact on most real-world BPF programs should be small.

The following unprivileged BPF bytecode drafts a minimal exploit and the mitigation:

[...]
// r6 = 0 or 1 (skalar, unknown user input)
// r7 = accessible ptr for side channel
// r10 = frame pointer (fp), to be leaked
//
r9 = r10 # fp alias to encourage ssb
*(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
// lfence added here because of pointer spill to stack.
//
// Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
// for no r9-r10 dependency.
//
*(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
// 2039f26f3aca: no lfence added because stack slot was not STACK_INVALID,
// store may be subject to SSB
//
// fix: also add an lfence when the slot contained a ptr
//
r8 = *(u64 *)(r9 - 8)
// r8 = architecturally a scalar, speculatively a ptr
//
// leak ptr using branch-based cache side channel:
r8 &= 1 // choose bit to leak
if r8 == 0 goto SLOW // no mispredict
// architecturally dead code if input r6 is 0,
// only executes speculatively iff ptr bit is 1
r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast) SLOW:
[...]

After running this, the program can time the access to *(r7 + 0) to determine whether the chosen pointer bit was 0 or 1. Repeat this 64 times to recover the whole address on amd64.

In summary, sanitization can only be skipped if one scalar is overwritten with another scalar. Scalar-confusion due to speculative store bypass can not lead to invalid accesses because the pointer bounds deducted during verification are enforced using branchless logic. See 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") for details.

Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks} because speculative leaks are likely unexpected if these were enabled. For example, leaking the address to a protected log file may be acceptable while disabling the mitigation might unintentionally leak the address into the cached-state of a map that is accessible to unprivileged processes.

Original Source

Url : http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-53024

Sources (Detail)

https://git.kernel.org/stable/c/01bdcc73dbe7be3ad4d4ee9a59b71e42f461a528
https://git.kernel.org/stable/c/81b3374944d201872cfcf82730a7860f8e7c31dd
https://git.kernel.org/stable/c/aae109414a57ab4164218f36e2e4a17f027fcaaa
https://git.kernel.org/stable/c/b0c89ef025562161242a7c19b213bd6b272e93df
https://git.kernel.org/stable/c/da75dec7c6617bddad418159ffebcb133f008262
https://git.kernel.org/stable/c/e4f4db47794c9f474b184ee1418f42e6a07412b6
Source Url

Alert History

If you want to see full details history, please login or register.
0
1
Date Informations
2025-03-31 13:20:36
  • Multiple Updates
2025-03-27 21:20:35
  • First insertion